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Two-fluid spin-up in a centrifuge 
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The behaviour of the interface between two immiscible fluids of different density and 
viscosity in a centrifuge is investigated both analytically and experimentally. The 
study includes the interfacial shape and behaviour during both steady and transient 
operation of the centrifuge. The interface shape is investigated for rigid-body rotation 
and during slow steady acceleration or deceleration of the centrifuge. The dependence 
of the interface shape on time is investigated during a rapid spin-up to a slightly differ- 
ent value of the angular velocity, which then remains constant. Some aspects of inter- 
face stability are also reported. 

1. Introduction 
The technique of zonal centrifugation, as applied to a variety of problems of biologi- 

cal interest, has developed rapidly during the past decade. Separation of cell com- 
ponents, purification of virus material and isolation of trace amounts of virus present in 
cells are but a few of the applications recently developed. An early summary of these 
developments is provided by Anderson (1966). In  these applications many modes of 
centrifuge operation are employed including spin-up of fluids with discrete or con- 
tinuous density stratification. During spin-up and ultimately during deceleration, 
various means are employed to prevent bulk mixing effects. These include radial 
baffles and controlled acceleration and deceleration rates. The fluid mechanics of such 
devices offers a multitude of problems of interest. An idealized version of one such 
problem, involving discrete density stratification, is treated in this paper. As has been 
pointed out by Holton (1965), such a system is also of interest in modelling baroclinic 
processes involved in atmospheric and oceanic circulations. 

In the configuration to be studied a lighter liquid (liquid 1) lies above a heavier 
liquid (liquid 2) in a cylindrical centrifuge with a flat top and bottom. In one series of 
experiments the centrifuge rotates with an angular velocity Q(t) which is slowly vary- 
ing with time. If  R were constant, the interface between the two immiscible liquids 
would assume a parabolic shape. When Q depends on time, quite different interfacial 
shapes can be observed. This is illustrated in figure 14 (plate l) ,  in which 20 CS oil 
floats on water in a transparent centrifuge. In  figure 14(e) the angular velocity is 
steady and the shape is the equilibrium parabola modified by surface-tension effects. In 
figure 14 (a )  the angular velocity has about the same value but is slowly increasing with 
time. The interface has a markedly different, inverted, shape. This is easily understood 
qualitatively by considering the limiting case where the upper liquid has infinite vis- 
cosity and the lower liquid zero viscosity. Then the upper liquid has solid-body velocity 
at the instantaneous angular velocity while the zero-viscosity liquid slips and remains 
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at rest. Because of centrifugal forces the pressure in the upper liquid is lower in the 
centre and higher near the periphery. Therefore the lower liquid tends to rise in the 
middle, an eflect which is more pronounced when the density difference is small. 
The detailed analysis of this phenomenon is less trivial than this, however. 

The equations describing the motion are generalizations of those derived by Ped- 
losky (1967). The formulation differs in several respects. Pedlosky restricts his analysis 
to small rotational Froude numbers. In  the present treatment substantial variations in 
Froude number are permitted. In  addition fluids of different viscosities are allowed and 
both rapid spin-up and slow spin-up are included. 

In  Q 2, the equations governing the spatial and temporal development of the inter- 
faceareobtained. Sections 2.1 and 2.2 treat the transient response of the interface shape 
to a sudden change in angular acceleration and velocity respectively. The equations 
describing the interface behaviour during small steady acceleration and deceleration 
of the centrifuge are obtained in 3 2.3. The remaining parts of the paper describe the 
experimental equipment and the results of experiments. 

2. Analysis 
If the Ekman number ';E = u/QHZ, H = height of centrifuge) in each liquid is 

sufficiently small and h is sufficiently small, viscous effects are confined to thin Ekman 
layers at  the top and bottom of the centrifuge bowl and on both sides of the curved 
interface and to thin Stewartson layers along the cylindrical wall. 

Equations describing the inviscid interior parts of the liquids may be obtained by 
linearizing the Euler equations, in cylindrical co-ordinates, about slowly varying 
solid-body rotation. Denoting the velocity components by (wr, rQ( t )  + vg, w,), where 
(v,, vg, w,) are small perturbations from rigid-body rotation, one finds, in each liquid, 

prQz+ 2pQ~,  = ap/ar, ( 1 )  

a v , p  + r h  + ~ Q v ,  = 0, (2) 

p g + a p p z  = 0, (3) 

avr/ar + vr/r + av,/az = 0. (4) 

The terms aw,/at and aw,/at have also been neglected compared with @/at. Equations 
(1)  and (3) imply that ve is independent of z, and also determine the pressure once the 
velocity has been found. Equation (2) gives the radial velocity, 

v, = - (zsz)-~ (rh + aw,/at) ,  ( 5 )  

which is independent of z. This does not vanish at  the cylindrical walls but feeds fluid 
into Stewartson layers along this wall. Equation (4), the continuity equation, then 
shows that w, is a t  most a linear function of z. If the position of the interface is denoted 

s2 1 a awe2 vzz(z = f-) - wz2(z = 0)  = 
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where subscripts 1 and 2 are now used in the upper and lower liquid respectively; 
z = 0 is the bottom and z = H the top of the bowl. 

The velocities a t  the top and bottom are given by the Ekman-suction boundary 
conditions 

The Ekman-suction formulae at the slowly moving interface are more difficult and are 
derived by solving the viscous Ekman layers on both sides of the interface subject to 
continuity of velocity and shear stress at  the interface. These conditions, which may 
be deduced from equations given by Greenspan (1 969, chap. 2 ) ,  are 

(Ve ,  - V 0 2 ) )  (11)  vZ2(z = f-) = 
PI v t  

P l V t  + P2 4 
where f’ = af/ar. The time derivative off occurs because one must compute the Ekman 
suction relative to the moving interface. 

When (8)-(11) are substituted into (6) and (7) one obtains 

r - - - -  af i i l a  -rZ(f - H ) - -  [ a  -rp a v O $ L ) t ) ]  (f-H) 
at 2 ~ a r  2Q ar 

a 
P2 ”2 

,%2(r,t) (12) 
P I  ”2 + P2 v2 

and 

vei(r) $1 
a 

P1 v1 1 + ( 1 +  f’”* 

These equations relate vgl and vO2 to the interface shape function f ( r ,  t ) ,  which is not yet 
known. An additional condition to be imposed is the balance between pressure differ- 
ences across the interface and surface-tension forces: 

(14) 
f ”  

where a is the surface tension. Equations (1)  and (3) may be solved for the tangential 
derivative of the pressure on each side of the interface, whence (14) may be expressed as 

= - S A P -  aar ( f--- 1 r2:2j + 2p2 five2 - 2pi five,, (15) 

where Ap = p2-p1 > 0. 
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Equations (12), (13) and (15) constitute three equations for the three unknown 
functions vgl, vg2 and f. These are to be solved subject to the condition that the contact 
angle of the interface with the wall be specified: 

tan? = af/ar at  r = a, (16) 

where 7 is the angle between the normal to the interface and the axis of the centrifuge. 
A second condition is that the volume occupied by each liquid remains constant. This is 

2n rfdr = na2Ho, so” 
where a is the radius of the centrifuge and H, is the mean height of the interface. 

2.1. Decay of transients 

In  an attempt to understand better the time scales involved, a transient problem 
will be considered. If the acceleration rate which produced figure 14(a) is suddenly 
reduced to zero, how long will it  take for the interface to decay to that shown in figure 
14 ( e ) ?  Qualitatively, the dropping interface squeezes liquid into the Ekman layers, 
where it flows radially to conserve mass and meets viscous resistance to flow. 

To simplify the problem as much as possible, surface tension will be neglected and it 
will be assumed that vl +a, so that vg1 = 0. (In the experiments vl 2 20v2.) Then, with 
h = 0, (1  3) and ( 1  5) become 

Using (1  9) to eliminate vg2 from (1  8) gives 

a single nonlinear partial differential equation for f. 
In the steady state the only bounded solution is 

f - r2SP/Zg = constant, 

which is the equilibrium parabola with the constant of integration to be determined 
from (17). It is convenient to use a new independent variable 6 = r/a and a new depen- 
dent variable 

where 

is a rotational Froude number. This new variable has the property 

F = (f/4 - (Ho/a) + iNF(8 - C2), (21) 

NF = a2Q2/ag (22) 

in the steady state and more generally measures the deviation from the equilibrium 
parabola. 
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FIGURE 1. Decay of interface shape from a state of steady acceleration for water and 0 CS 
silicone oil [equation (29)]. Curves correspond to times t = 0, 50 s, 100 s, 150 s and co. Compare 
with figure 14. 

It is also convenient to  introduce an internal rotational Froude number 

4 = NFP2AP2 - P I ) *  
a dimensionless time 

t2 = Q(v,/a2Q)4,t(2N1)-1 

h = @,/a) (4N1)-1. 
and a dimensionless parameter 

Equation (20) can now be written 

(24) 

( 2 5 )  

In  order to proceed, two approximations will be made: 

These would be exact for a flat interface and should not introduce too much error for the 
cases to be studied experimentally because of the large depth-to-radius ratio of the 
bowl and the reducing effect of the quarter power. 

With these approximations ( 2 7 )  becomes linear and may be solved by separation 
of variables to give 
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where Jo is a zeroth-order Bessel function andj,,, is the nth root of J1, i.e. Jl(jl,,) = 0. 
The Bessel function has the property 

1; ~ J o ( j 1 ,  n Y) = 0 

therefore (23) is satisfied. The coefficients A ,  can be determined from the initial values 
by using the orthogonality of the Bessel functions. 

The e-folding time, computed from the largest exponent in (29), is from one to 
several minutes depending on the angular velocity. 

The decaying interface shape calculated from (29) for a special case is shown in 
figure 1 and should be compared with the sequence of figures 14(a)-(e). The coefficients 
A ,  were determined by analysis of the initial shape, from a photograph, at the start of 
the decay. The details of the experiment will be discussed in a later section. 

From ( 1  9) one finds that the velocity 

The basic linearization which produced (1)-(4) required that this quantitity be small 
(ve < r Q ) .  This requires that the internal Froude number NI be large, a condition that 
was easily satisfied in the experiments. Since aF/aC is negative in these experiments, 
the flow rotates more slowly than the bowl. This sense of rotation is required in order 
for the fluid between the dropping interface and the bottom to be squeezed into the 
Ekman layers. 

2.2. Step spin-up 

The response of the fluid to an instantaneous spin-up of the centrifuge from an initial 
angular velocity i2 - AQ to a final angular velocity Q is also described by (1 2), (1  3) and 
(15) provided AQ/Q is small. In  this case one sets = 0 and lets vel, ve2 and F be the 
perturbations from the final spun-up state. The initial conditions are then calculated 
from the initial state: 

vel/aQ = vez/ai2 = - g(AQ/i2), 
(31) I F = (*- c2) NF(AQ/Q).  

The case where the viscosity of the upper fluid is much larger than that of the lower 
fluid is of particular interest. This problem has two characteristic times. There is a 
short time period during which the upper fluid rapidly spins up to its final state and the 
interface shape adjusts to this new situation. The rapidly changing interface also 
induces a motion in the lower fluid. This initial phase is followed by a slower decay of 
the lower fluid to the final state. This phase is described by the transient decay problem 

Analytically the problem is a singular perturbation problem requiring an initial 
'boundary layer '. If one scales the time by the dimensionless time t, defined by (25), the 
small parameter (v,/v,)t will appear before the time-derivative terms on the left-hand 
side of (12). If one then takes the limit as this parameter tends to zero (12) yielcis 
vel = 0 and then (13) and (15) give (27). It is clear that V81 = 0 does not satisfy the initial 
conditions of the problem for the classical reason of a small parameter premultiplying 
one of the highest derivative terms. One may eliminate this problem by rescaling so a8 

of 32.1. 



Two-JEuid spin-up in a centrifuge 417 

to absorb the small parameter into a new time variable. To this end introduce the 
dimensionless time 

which scales the time with the spin-up time for fluid 1 alone. Introduce 

t, = Qt [v,/Q(H- Ho)2]&, (32) 

v1 = v,,/aQ, v2 = vez/aQ (33) 

and F, defined by (21). If surface tension is neglected and the approximations indicated 
by (28) are made, (12), (13) and (15) may be written (with 11. = ( v z / v l ) ) )  as 

(35) 
(36) 

a g - -  aF ---gy" H, 1 a av = 

H - Ho at, H - H, 2 a[ at, 1 + (p2/p1) 11.2 a[ 

VZ = (Pl/P2) v1+ (1/2NI) (WX).  
In the limit 11. = (vz/vl )*  -+ 0, the right-hand side of (35) is zero and it may be integrated 
once with respect to time, giving 

where the initial conditions (31) have been used. 
The limiting form of (34) is 

and when (36) is used to eliminate vz from (37) the following equation results: 

This pair of equations, with initial conditions given by (31) and the conservation-of- 
volume condition (23), may readily be solved for v1 and F. A solution for F is sought 
which is the sum of a steady part and a transient part. Separation of variables then 
leads to 

OD 

F = 4+ ~BnJo(j,,nc)exP(-$nt,), (40) 
n = l  

where 

I, and Il are modified Bessel functions and the coefficients Bn are determined from the 
initial conditions. When pz -p l  is small the numbers $n satisfy (H - H,)/H < $n < 1 
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FIGURE 2. Short-time asymptotic interface shape for step spin-up of water and 350 CS silicone 
oil [from (44)]; Q = 204 r.p.m., b = 0.1, H, /H = 0.5. Dotted line corresponds to rigid-body 
rotation at 204 r.p.m. Compare with figure 15. 

and when h is small they tend to be close to the lower bound for the lower modes and 
near the upper bound for sufficiently large n. Therefore it is clear that in a time 
comparable to the spin-up time of the upper fluid vl-+O, J’+& and, from (36), 
v2-+ (2N1)-l aF,/ 8c. By the concepts of matched asymptotic expansions this short-time 
asymptote provides the initial conditions for the further slow decay to the ultimate 
spin-up state. That is, F, provides the initial conditions for the calculation of the 
coefficients A ,  in (29). 

The short-time asymptotic interface shape is given by 

f,/a - Hofa = 4 + i(g2 - 4) NF (44) 

and is not simply a small perturbation from the equilibrium shape when h is small. 
From (43) it can be seen that, in this case, the interface bulges up in the middle with 8 

corresponding deep boundary layer near the bowl wall with thickness of order A*. This 
is shown in figure 2 for 350 CS oil (with (p2 - p1)/p2 = 0.028) over water with R = 204 
r.p.m. and H0/a = 0-5, which makes h = 0-015. This is to be compared with figure 15 
(plate 2), which shows a photograph taken 20 s after initiation of spin-up under the 
same conditions. 

From (44) one can calculate the rise of the centre-line height above its initial position 
for rigid-body rotation at angular velocity R - AR. This is found to be 

--- l---), 1 A-it 
P 2 H  PIHoAn Q ( 211(h-it) (45) 
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FIUTJRE 3. Maximum axial rise of interface during step spin-up for water and 
350 cS silicone oil; H,IH = 0.5. 

which is approximately 
--- P1 Ho A n  
P 2 H  a 

when h is small. This compares with the ultimate drop of the centre-line height by the 
amount +NH. AIR/IR. Measurements of centre-line rise have been performed for a range 
of SZ for the 350 CS oil and are compared with (45) in figure 3, 

2.3. Quasi-steady solution 

A major goal of this paper is to study the interfacial shape during a slow spin-up. If the 
characteristic relaxation time of the last section is small compared with the charac- 
teristic time for changes in IR, namely Q/h, then the problem may be simplified by 
neglecting the terms aflat, &,,/at and av,,/at in (12) and (1  3). Furthermore the surface 
tension may be neglected as a first approximation and the approximations of (28) may 
be made. This will be done in an orderly fashion by making use of a multiple perturba- 
tion expansion. 

Attention will be restricted to the situation where h is constant. After an 
initial transient has decayed away, the solution will depend on time only through its 
dependence on Q and a dimensionless time T = In Q may be introduced with the 
properties 

a - n- a h a  a 
al=iIaT7 2- aQ' 

The dimensionless variable F defined by (21) is used and dimensionless velocities are 
defined by 

V, = NI vel/aQ = NI wl, 

V, = Nzv,2/aa = Nzv2. 

(47) 

(48) 

For the purpose of this section, a further simplification is made by assumingp, = p2 = p 
everywhere except in (15), where the difference Ap is multiplied by the gravitational 
acceleration 9. 
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An additional small parameter /3, which isessentially the ratio of the relaxation time 
given in (25)  to the characteristic time S Z / @  is defined by 

and a small surface-tension parameter is introduced by the definition 

a2 = a/ga2Ap. 

S = 1 + (df/dr)2 = 1 + (aF/ac+ Nrc)2, 
The notation 

r=st-i 
is adopted for convenience. 

With these new variables (1 2), (1  3) and (1 5) may be written as 

(49) 

which are to be solved with the boundary condition, obtained from (16), 

aF/a5 = tan 7 - NF 

and subject to the conservation condition (23).  The parameter E is unity. It is intro- 
duced as an artificial expansion parameter to reflect the fact that I? itself is small. It 
will be noted that the scaling has been chosen such that F ,  V, and V, are all of the same 
order of magnitude. Since I?, p, BINI and 62 are all small and a/aT = Qa/aSZ does not 
introduce an order change, the terms which determine this magnitude are the first 
termson the right-hand sides of (52)  and (53), which are of order one or less. For 
our experiments, the ranges of the parameters introduced above are given in $4.2. 

A solution is sought in the form of a perturbation expansion in these small para- 
meters which will be terminated after the first-order terms, neglecting squares and 
products of these parameters. The part of the perturbation expansion associated with 
the surface-tension parameter 6 is singular since S2 multiplies the highest derivative in 
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(54) and this necessitates a boundary layer with thickness of order 8. The expansion 
may be written as 

F = F(0) + ,$W + p 2 )  + - B F(3) + pF(4) + 6G ( 1-6 8 )+... , (55) 
NI 

with similar expansions for V,, V,, Sand I?. The last term in the expansion is a boundary- 
layer correction which is transcendentally small except near the bowl wall 6 = 1. 

It is a straightforward matter to solve (52) and ( 5 2 )  for the zeroth-order velocities: 

and 

Using these expressions in (54) yields 
H, vs H F(O)= -B(Y2-i)A with A = t N F + - - r -  
a v1+vS a' 

This parabolic function opens downwards if p is positive (spin-up) and 
(vi > va). The effect of this when added to the equilibrium profile 

is positive 

f l u  = QNFP - $1 + H,/a 

leads to the observed inverted shapes if /3B > &NF. Since p must be small this may be 
best achieved for moderate or small Froude number and large H,/a. From (56) and 
(57) it  is seen that the velocities in both fluids are solid-body rotations at  angular 
velocities slightly different from that of the centrifuge. If p is positive and vl v2 the 
lower fluid rotates more slowly than the upper fluid. 

Similarly the first-order terms F1), F(2) and F(3) are easily found to be 

4 16 
(59) F(1) = &pif - ( I  + y2<2)*-- [( 1 + y2)) - 11 + - 52) .  

LY2  45y4 
where 

y = NF-2,BB, (60) 

F(2) = p(+A - &NF) g4 +p( - &B + &NF) Y2 - &/3NF (61) 
and 

The function F(4) is the surface-tension correction in the interior of the fluid and is 
given by 
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FIQURE 5. Contour lines of percentage contribution of firsborder perturbation terms to  the 
zero-order solution F(0' on the axis; water and 350 cS oil; Ho/H = 0.25. 

where the constant of integration C, must be so determined that (23) is satisfied, with 
the boundary layer included. 

To treat the boundary layer, introduce the new variables E = (1 - [)/a and G(E) 
defined by (55). Substituting (55) into the boundary condition and into (54) gives, 
respectively, 

and 

= y-tan7 (64) 

dG d d2G/dE2 

dc - 
_ -  

[ 1 + (y - dG/dE)2]t- 

FIGURE 4. Contour lines of percentage contribution of first-order perturbation terms to the zero- 
order solution Fca) on the axis; water and 20 cS oil, Ho/H = 0.6. Example: a = 150 r.p.m., 
h = 0.1 r.p.m./s, [ ( P ( ~ ) + / W ( B ) + ( / ~ / N ~ )  F ( ~ ) + P P ( ~ ’ ) / B ~ o ) ]  = 0.1. 
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The latter equation may be integrated once, giving 

where the constant of integration must be zero in order for the solution to be bounded 
at infinity. This equation is too difficult to solve in closed form, but enough information 
can be obtained to evaluate the constant C,. 

The condition imposed by (23) may be written as 

This integral may be evaluated by using (66b)  and the boundary condition (64). This 
gives 

Y 
(1 + y2p’ 

J Gd(=sinq- 
0 

Equation (67) then yields 
C, = -2sinr~’ 

thus completing the expression for F(4). 

All of the above corrections are typically of order &lo% of Fo over most of the 
operating range but they can be as large as 20% or more under extreme operating 
conditions. Figures 4 and 5 indicate the contributions made by the perturbation terms 
to the axial position of the surface. Along any contour indicated in these figures the 
fractional contribution of the perturbation terms is constant. From the figures one 
can decide whether a given pair of operating parameters (a, h) is such that the results 
of the experiment should be reasonably described by the perturbation analysis. 

3. Experimental equipment 
The centrifuge used in these experiments consists of a right circular cylinder cut 

from a standard lucite pipe. The section used was carefully selected for concentricity 
and uniformity of wall thickness and has a length of 73.15cm between the end plates, an 
inside radius of 6 cm and a wall thickness of 1-27 cm. The end plates are threaded disks 
which screw into matching threads machined in the centrifuge bowl wall. Sealing is 
accomplished with O-rings. The end plates are also fitted with shafts which rotate in 
oil-lubricated, water-cooled bearings. The lower bearing is provided with appropriate 
damping to minimize any oscillations resulting from slight imbalance in the bowl. The 
centrifuge bowl i 4  suspended via the upper shaft from the rotor of the air turbine which 
provides the motive power for driving the centrifuge. The turbine rotor is fitted with a 
magnetic pick-up which produces a signal used for monitoring and controlling the 
speed of rotation. The magnetic pick-up provides six pulses per revolution. These 
pulses, after shaping and amplification, are counted by a conventional electronic 
digital counter, for preselected intervals of time, to provide a measure of the rotational 
speed. The same pulses are also used for speed control by comparing them with an 
internally generated signal, preset for a desired speed, and using the difference signal 
to adjust the air supply to the turbine driving the centrifuge. This scheme results in 
speed control of about ? 1 r.p.m. at all rotational speeds of operation. Electronic con- 



424 A .  X. Berman,  J .  Bradford and T .  8. Lundgren 

trol circuits allow operation of the centrifuge either at  a constant preselected speed or 
at preselected rates of acceleration or deceleration. Two proximity probes, one near 
the top of the bowl and the other near the bottom of the bowl, permit monitoringof the 
excursions of the bowl ends from a state of pure rotation about the geometric axis of the 
bowl. With the exception of the lucite bowl with modified end plates used in our experi- 
ments, all the centrifuge components and electronic controls have been described in 
detail by Anderson (1966). 

The liquids used were distilled water and Dow Silicone oil. Temperatures were 
measured with a calibrated thermocouple before and after a run and the average 
temperature used for computation of water and oil viscosities. Surface and interfacial 
tensions of the liquids were measured with a DeNouy tensiometer. Heights of interface 
surface points relative to a selected reference level were measured with a cathetometer. 

In  all of the experiments to be discussed, the upper part of the centrifuge contained 
either 20 cS or 350 cS silicone oil (specific gravity = 0.955 and 0.972 respectively) 
while the lower part contained demineralized water. 

After completion of the experiments, oil and water from the neighbourhood of the 
interface were removed from the centrifuge and the surface and interfacial tensions 
were determined. For water and air, a surface tension of 49.14 dyn/cm was found 
while for 20 CS oil and air, 20.15 dyn/cm was obtained. The interfacial tension for the 
20 CS oil and water was found to be 28.0 dyn/cm. For water and 350 CS oil the inter- 
facial tension was found to be 31.18 dyn/cm. Wetting angles were estimated by obser- 
vation of the interface in the centrifuge. The rather low surface tension for the water is 
attributed to traces of surface-active agents remaining on the inner lucite wall of the 
centrifuge, which had been cleaned, rinsed with demineralized water and dried after 
machining. 

4. Experimental results and discussion 
4.1. Rigid-body rotation 

To investigate the effects of interfacial tension on the interface between the water and 
oil, measurements were made of the steady-state axial depth of the interface at 
various constant rotational speeds from 50 to 400 r.p.m. At  each speed, the two fluids 
were permitted to attain rigid-body rotation and an average value of the axial depth of 
the interface relative to its position at  rest (f = H,) was determined. The axial depth of 
the interface is very sensitive to small accelerations or decelerations. These result from 
slight variations in rotational speed introduced by pressure variations in the primary 
air supply and associated drift in the present signal used to control rotational speed, 
Because of this problem, the depth of the axial interface point was measured at  inter- 
vals during the approach to rigid-body rotation and for about 20-30 min after achieve- 
ment of rigid-body rotation. The average position obtained from the latter measure- 
ments was taken to be the position of the axial interface point for rigid-body rotation. 

The results of such measurements for 20 cS oil and water are shown in figure 6, which 
gives the axial depth of the interface relative to its rest position for various rotational 
speeds. Also shown in the figure are the predicted depths computed from (55) with 0 
set equal to zero. These curves show the prediction obtained if one neglects surface 
tension and also the result of using an interfacial tension of 28.0 dyn/cm and a wetting 
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FIGURE 6. Interface axial depth in rigid-body rotation. -, calculated using 
u = 28.0 dynlcm; - - - - - -  , calculated using u = 0. 

angle of 60". Fortunately, the calculated curve is relatively insensitive to the wetting 
angle, so that estimates of this angle from direct observation of the interface in the 
centrifuge were sufficient. As can be seen in the figure, the effect of interfacial tension is 
clearly outside experimental scatter at  the higher rotational speed, where the curvature 
of the interface is greatest. 

As indicated by the definition of S2 following (49), the effect of surface tension is 
inversely proportional to the density difference of the fluids and hence the effect is 
expected to be observable for our system. By the same argument, surface-tension 
effects are expected to be negligible for experiments involving an air-liquid interface, 
as in the work reported by Goller & Ranov (1968). 

4.2. Quasi-steady effects of acceleration and deceleration 

A series of experiments was performed to determine the behaviour of the water-oil 
interface under conditions of small steady acceleration or deceleration of the centrifuge. 
Electronic control circuits permit setting various acceleration or deceleration rates. A 
signal related to the bowl speed and an internally generated signal varying at  a rate 
related to the desired acceleration or deceleration are compared and the difference is 
used to control the air supply to the air turbine. 

During an experiment, pulses from the magnetic pick-up in the turbine head are 
counted over a 10 s interval. The resulting count is taken as the average rotational 
speed of the centrifuge for that time interval. The change in speed for successive 10 s 
intervals is a measure of the acceleration rate. The mean acceleration rate for a given 
experiment is obtained by averaging the rates, obtained as described above, over the 
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FIGURE 7. Interface axial depth for steady acceleration, water and 20 CS silicone oil, 
Ho/H = 0.6, Qsvg = 0.85 r.p.m./s. 
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FIGURE 8. Interface axial depth for st?ady acceleration, water and 20 cS silicone oil, 
H,/H = 0.6, Rnrg = 0.115 r.p.m./s. 

duration (about 30 min) of the experiment, thus averaging out any small fluctuations 
in the acceleration or deceleration rates induced by the speed control. 

The experiments discussed below cover a range of rotational Froude numbers NF 
from about 0.2 to 10, a range of internal Froude numbers NI from about 4 to 400 and a 
range of characteristic time ratios B from about 0.1 to 0.5. The surface-tension para- 
meter 6 is less than 0.2 for both the 20 CS and the 350 CS oil. The surface shape para- 
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FIGURE 9. Interface axial depth for steady acceleration, water and 20 CS silicone oil, 
H,/H = 0.6, = 0.151 r.p.m./s. 
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H, /H = 0.6, R,,, = -0.091 r.p.m./s. 
10. Interfaoe axial depth for steady deceleration, water and 20 CS silicone oil, 
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FIGURE 11.  Interface axial depth for steFdy acceleration, water and 350 CS silicone oil, 
Ho/H = 0.25, Ravg = 0.057 r.p.m./s. 
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FIGURE 12. Interface axial depth for stepdy acceleration, water and 350 CS silicone oil, 
Ho/H = 0.25, R,,, = 0.147 r.p.m./s. 

meter I’ ranges from about 0.2 to 2. Note that for some of our data ,l3 and I’ are larger 
than would seem reasonable for the perturbation scheme used in the analysis. Never- 
theless, as indicated later, agreement between predictions and observations is good 
despite this fact. 

The results of the experiments with water a,nd 20 CS silicone oil at mean accelera- 
tion rates of 0.085, 0.115 and 0-151 r.p.m./s are shown in figures 7, 8 and 9. The 
result for a mean deceleration rate of - 0.091 r.p.m./s is presented in figure 10. These 
experiments were performed a t  an H,/H of 0.6, where H, is the rest height of the inter- 
face and H is the total inside length of the bowl. The experimental results for water and 
350 CS oil are shown in figures 11 and 12 for mean acceleration rates of 0-057 and 0.147 
r.p.m./s, respectively, and H,/H = 0.25. In all figures, the depth of the axial interface 
point relative to its position when the bowl is at  rest is shown as a function of rotationel 
speed. Also shown in the figures are curves obtained from (55). These curves correspond 
to computations made with the mean acceleration or deceleration rate. 

For all deceleration experiments, deceleration was started after the centrifuge had 
been rotating at a selected speed for a sufficiently long time to ensure rigid-body 
rotation of the contained fluids. After deceleration starts, some time must elapse 
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before the interface shape adjusts from that appropriate to rigid-body rotation to the 
shape associated with the imposed steady deceleration rate. This effect can be seen 
clearly in figure 10 by noting the deviation of the data points at high rotational speed 
from the trend of the remaining data. These points represent data obtained within the 
first few minutes after the start of deceleration. The time required for this transient 
phase to decay is estimated, from (29), to be 4.5-5 min, which is consistent with the 
time required for the transient adjustment of the interface, as estimated from the 
figures. 

The results given in figure 7 are those from an acceleration experiment in which 
acceleration is started from a state of rigid-body rotation at  low speed. The deviation 
of the data point at  the lowest rotational speed is again associated with the time re- 
quired to achieve an interface shape appropriate to the imposed acceleration rate. 

In  many of the figures under discussion, cyclic deviation between the data and the 
computed curves seems to be present. Such variation is associated with pressure 
variations in the primary air supply tank which result from the on-off cycle of the air 
compressor. 

The agreement between experimentally measured depths and those predicted from 
the analysis is good even for data obtained under conditions which are outside those 
for which the perturbation analysis might be expected to be reasonable. The ranges of 
Q and i’l for which we expect the perturbation analysis to be valid can be determined 
from figures 4 and 5 .  These figures are contour plots, drawn in R, 0 space, giving 
regions in which the sum of the correction terms P1), ..., F(*) of the perturbation 
expansion is within a certain percentage of the zero-order solution P O ) .  Figure 4 applies 
to water and 20 CS oil at H/Ho = 0.6 and figure 5 applies to water and 350 CS oil at  
H / H o  = 0-25. The fact, that relatively good experimental agreement is sometimes 
achieved in regions where the correction terms are relatively large seems to indicate 
that the corrections of higher order than those included in the perturbation analysis 
can be small under some conditions. 

4.3. Transient effects and stability 
A brief study of the transient effects discussed in the analysis section was carried out 
for both step spin-up ($2.2) and the decay of transients (52.1). 

For step spin-up, the centrifuge was automatically set at  some given speed (corres- 
ponding to R - AQ in the analysis) and the fluids allowed to attain rigid-body rotation 
at that speed. At  t = 0, the speed of the centrifuge was suddenly increased by an 
amount A 0  chosen to increase the bowl speed by 5 or lo”,&. The centrifuge was then 
maintained at  this new speed. The axial height of the interface was observed first to 
rise to some maximum height and then to decay to that of rigid-body rotation a t  the 
new speed. Figure 15 (plate 2) shows a photograph of the interface shape at  its maximum 
axial height. The fluids are water and 350 CS oil at  a speed of 204 r.p.m. for a AQ/Q of 
0.1. Figure 2 shows the predicted shape of the interface at its maximum rise for the 
same case, calculated from (44). The calculated shape of the interface can be seen to 
possess the same qualitative features as are observed experimentally. The shape of the 
interface for rigid rotation at  0 = 204 r.p.m. is also shown in figure 2. 

To obtain a quantitative comparison between theory and experiment, the maximum 
axial rise of the interface was measured for a variety of speeds and sudden changes in 
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FIUURE 13. Decay of interface from a state of steady acceleration for water and 350 cS silicone 
oil. Computed from (29) at times t = 0, 50s,  l O O s ,  150s, 200s and 00. Solid curves denote 
shape of interface initially (at t = 0) and at  t = co. Dashes on the axis indicate the observed 
interface axial depths at 50, 100, 150 and 200 s. 

speed and compared with the rise calculated from (45). The results are shown in figure 
3, where the dimensionless rise is plotted against A-t [see (ZS)], which is proportional to 
Q. The agreement is good below about 250 r.p.m. Above this speed the data lie some- 
what below the predicted values. We believe that this is due to surface-tension effects 
on the interface shape, which at  higher speeds has regions of large curvature. Such 
surface-tension effects have been neglected in the analysis leading up to the equation 
for the maximum axial rise. 

To study the decay to rigid-body rotation, the centrifuge was accelerated from rest to 
about 100 r.p.m. at  a rate selected so as to produce an interface shape which was con- 
vex downwards and of reasonable height. The acceleration was then stopped and the 
electronic controls set to maintain a constant speed of about 100 r.p.m. The height of 
the axial interface point was then measured at  several times during the decay of the 
interface shape to the shape associated with rigid-body rotation at the selected con- 
stant speed. In  addition, photographs were taken to observe the complete interface 
shape during the decay to rigid-body rotation. A series of photographs illustrating 
such a decay for water and 20 CS silicone oil is shown in figures 14(a)-(e) (plate 1) .  
Figure 1 gives the corresponding behaviour of the interface computed from (29). A 
more quantitative comparison between the time dependence of the observed and 
calculated depth of the axial interface point is given in figure 13for water and 350 cS oil. 
The higher viscosity oil was used in this experiment to approximate more closely the 
assumption of infinite viscosity of the upper fluid made in the analysis of the transient 
decay. 

The agreement between the observed and predicted behaviour of the interface during 
the transient decay is surprisingly good in view of the fact that the analysis neglected 
surface tension and assumed infinite viscosity of the upper fluid. 
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During acceleration and deceleration studies it was observed that instabilities 
occurred a t  certain combinations of rotational speed and acceleration rate. During 
acceleration these instabilities manifest themselves initially as a wavelike deformation 
of the interface, clearly seen in figure 16 (plate 2). Continued acceleration after the 
appearance of such deformation results in a complete breakup of the interface. 

In  general, much higher deceleration rates were required to induce instability than 
was the case for acceleration. Higher acceleration rates from rest resulted in the 
appearance of instability a t  a lower rotational speed. 

The authors gratefully acknowledge both the loan of the centrifuge and its auxil- 
liary equipment and financial assistance, provided by Union Carbide Corporation, 
Nuclear Division, Oak Ridge, Tennessee. 
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